
2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.h… 1/23

[Visual Basic]

[C#]

[C++]
Requirements

Properties

Methods

Events

Structures

Enumerations

Description

[Visual Basic]

[C#]

[C++]

Description

[Visual Basic]
[C#]

[C++]

AeroShield™ MX280002A RF Drone Detection and Tracking Software : AeroShield API Software : AeroShield Class

AeroShield Class

AeroShield.DroneTracker

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class DroneTracker
Inherits UserControl
[Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()]
public class DroneTracker : UserControl
[Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()]
Namespace: AeroShieldAPI
Platforms: Windows Phone 8.1, Windows Phone 8, Windows 8.1, Windows Server
2012 R2, Windows 8, Windows Server 2012, Windows 7, Windows Vista SP2,
Windows Server 2008 (Server Core Role not supported), Windows Server 2008 R2
(Server Core Role supported with SP1 or later; Itanium not supported)
Assembly: AeroShieldAPI (in AeroShieldAPI.dll)
public ref class DroneTracker : public UserControl^
BandEnabled, Configurationfile, EmailAddress, EmailAuthenticate,
EmailHostname, EmailPassword, EmailPortNumber, EmailUsername,
FilterTransientEvents, MapFileName, MaskOffset, MaskTraceCount, Monitoring,
OpenReports, RecordStationaryEvents, ReportFolder, SendEmail, ShowMap,
ShowStatusbar, ShowToolBar
ClearIgnoreList, CreateMasks, DoHealthCheck, GetMonitorBand, LatencyTest,
LoadConfiguration, Monitor, MonitorAdd, MonitorFind, MonitorListClear,
MonitorRemove, MonitorUpdate, SaveConfiguration, SendRSMCommand,
SetMonitorBand, StartTCPServer, StopTracking, TrackAt, UIAction
Hovering, MaskViolation, MouseOverToolbar, StatusMessage, TrackingEvent,
TrackingStarted, TrackingStopped
DroneListInfo, MonitorBand, RemoteMonitor
MaskLevels, TrackingModes, TransientFilterLevel

DroneTracker.AlwaysGenerateReport Property

Sets/Gets a Boolean value that determines if a report is automatically generated
after the conclusion of each tracking event. If true, the report default folder is the
user's Documents folder. The report folder can be set with the DroneTracker.
Public Property AlwaysGenerateReport() As Boolean
public bool AlwaysGenerateReport {get; set;}
public:
property bool AlwaysGenerateReport {
bool get();
void set(
bool value
);
}

DroneTracker.EmailSenderAddress Property

Sets/Gets the return email address used when sending notification emails.
Public Property EmailSenderAddress() As String
public string EmailSenderAddress {get; set;}
public:

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/MX280002A-AeroShield_Help/Intro.html#wwconnect_header
https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/MX280002A-AeroShield_Help/chap-8-api.09.1.html#wwconnect_header

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.h… 2/23

Description

[Visual Basic]

[C#]

[C++]

Description

[Visual Basic]

[C#]

[C++]

Parameters

Description

property String^ EmailSenderAddress {
String^ get();
void set(
String^ value
);
}

DroneTracker.LatencyFactor Property

Gets/Sets the latency factor. This is an integer value between 1 and 10. It is
automatically set when doing DroneTracker.LatencyTest. This property allows
you to get the set value, or to set it manually.
Public Property LatencyFactor() As Integer
public int LatencyFactor {get; set;}
public:
property int LatencyFactor {
int get();
void set(
int value
);
}

DroneTracker.BandEnabled Property

Sets/Gets the current status of each RF band. There are 5 bands defined. The first
is the 2.4 GHz ISM band. The second is the 5.0 GHz ISM band. The other three
are custom bands and can be set to any hardware supported frequency range. This
property allows the user to set the bands in use. If only the first band is enabled,
for instance, then only the 2.4 GHz band will be monitored.
Public Property BandEnabled(_
ByVal Index As Integer _
) As Boolean
[System.Runtime.CompilerServices.IndexerName("BandEnabled")]
public bool this[
int Index
] {get; set;}
public:
property bool BandEnabled[int] {
bool get(
int Index
);
void set(
int Index
bool value
);
}
Index

DroneTracker.CheckIfConfigurationHasChanged Method

This method returns true if the current configuration differs from that saved in
the current configuration file. This allows the controlling program to determine if
the configuration file needs to be saved, or whether to prompt the user regarding

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.h… 3/23

[Visual Basic]
[C#]

[C++]

Description

[Visual Basic]
[C#]

[C++]

Description

[Visual Basic]

[C#]

[C++]

Description

[Visual Basic]

[C#]

[C++]

Description

[Visual Basic]

[C#]
[C++]

saving the configuration file. If the AeroShield user control is being used, this
prompt is taken care of in the UI.
Public Sub CheckIfConfigurationHasChanged()
public System.Void CheckIfConfigurationHasChanged()
public:
System::Void CheckIfConfigurationHasChanged()

DroneTracker.ClearIgnoreList Method

Removes all entries in the signal Ignore List.
Public Sub ClearIgnoreList()
public System.Void ClearIgnoreList()
public:
System::Void ClearIgnoreList()

DroneTracker.Configurationfile Property

Gets/Sets the configuration file name. The Get property returns the name of the
current configuration file. Setting the property value causes the specified file to be
loaded and the program settings stored in the file to be applied.
Public Property Configurationfile() As String
public string Configurationfile {get; set;}
public:
property String^ Configurationfile {
String^ get();
void set(
String^ value
);
}

DroneTracker.CreateMasks Method

Causes DroneTracker to talk with each RSM in the list and to collect max hold
traces for each active band. The traces are used to create mask, the violation of
which triggers a tracking event. The Mask trace count and Offset values should be
set first, as well as activating and configuring the sweep bands that will be
monitored.
Public Sub CreateMasks()
public System.Void CreateMasks()
public:
System::Void CreateMasks()

DroneTracker.DoHealthCheck Method

Communicate with each RSM in the list. Verifies that the RSMs respond as
expected.
Return value is a string containing the model, installed options, firmware version,
GPS Fix, and Ping time for each RSM.
Public Function DoHealthCheck() As String
public string DoHealthCheck()
public:
String^ DoHealthCheck()

DroneTracker.EmailAddress Property

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.h… 4/23

Description

[Visual Basic]
[C#]

[C++]

Description

[Visual Basic]

[C#]
[C++]

Description

[Visual Basic]

[C#]
[C++]

Description
[Visual Basic]

[C#]

[C++]

The DroneTracker Class can send an email at the end of each tracking event. This
property sets/gets the email address that the notification will be sent to.
Public Property EmailAddress() As String
public string EmailAddress {get; set;}
public:
property String^ EmailAddress {
String^ get();
void set(
String^ value
);
}

DroneTracker.EmailAuthenticate Property

DroneTracker uses an outgoing email server to send event notifications. The
server you use is up to you, and probably depends on your corporate IT
infrastructure. Many email servers require user authentification. This setting
should match the requirements of the server you chose to use. If you choose to use
Authentification, then you must provide a username and password for an account
on the email server.
Public Property EmailAuthenticate() As Boolean
public bool EmailAuthenticate {get; set;}
public:
property bool EmailAuthenticate {
bool get();
void set(
bool value
);
}

DroneTracker.EmailHostname Property

Sets/Gets the current email hostname.
Public Property EmailHostname() As String
public string EmailHostname {get; set;}
public:
property String^ EmailHostname {
String^ get();
void set(
String^ value
);
}

DroneTracker.EmailPassword Property

Gets/Sets the email server account password.
Public Property EmailPassword() As String
public string EmailPassword {get; set;}
public:
property String^ EmailPassword {
String^ get();
void set(

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.h… 5/23

Description

[Visual Basic]

[C#]

[C++]

Description

[Visual Basic]
[C#]

[C++]

Description

[Visual Basic]
[C#]

[C++]

String^ value
);
}

DroneTracker.EmailPortNumber Property

Gets/Sets the email server port number. This is a value provided by the
administrator of the server.
Public Property EmailPortNumber() As Integer
public int EmailPortNumber {get; set;}
public:
property int EmailPortNumber {
int get();
void set(
int value
);
}

DroneTracker.EmailUsername Property

Gets/Sets the username of the account being used to send email notifications.
Public Property EmailUsername() As String
public string EmailUsername {get; set;}
public:
property String^ EmailUsername {
String^ get();
void set(
String^ value
);
}

DroneTracker.FilterTransientEvents Property

Gets/Sets the use of Transient Event filtering in the detection algorithm.
DroneTracker detects a possible drone event by a violation of a sweep trace mask.
The public bands used for drone control are often noisy, and there can be many
signals that are not drone related that have to be looked at by the software to
determine if it is in fact a drone. Setting this property requires the DroneTracker
API software to verify that a signal is present in 3 consecutive trace sweeps before
it register and looks to see if it is a drone. These will often remove a number of
mask violations that otherwise trigger positive signals that have to be evaluated.
This comes at a cost, as it takes longer to trigger a detection event, so the
notification is delayed.
Public Property FilterTransientEvents() As Boolean
public bool FilterTransientEvents {get; set;}
public:
property bool FilterTransientEvents {
bool get();
void set(
bool value
);
}

DroneTracker.GetMonitorBand Method

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.h… 6/23

Description

[Visual Basic]

[C#]

[C++]

Parameters

Input parameter:
Return Value:

Description

[Visual Basic]

[C#]

[C++]

Parameters

Description

[Visual Basic]

[C#]

Returns the configuration of the sweep band requested. Bands are numbered 1 to
5.
Public Function GetMonitorBand(_
ByVal Index As Integer _
) As MonitorBand
public
MonitorBand GetMonitorBand(
int Index
)
public:
MonitorBand GetMonitorBand(
int Index
)
Index
Band number to return (1-5)
A structure of type MonitorBand

DroneTracker.GetTrackList Property

This returns a set of GPS coordinates for an active track. Tracks are only
available while AeroShield is actively tracking a drone. One the drone has left the
area, the track is stored in the tracking file and cleared from active memory. Use
this property to get an active track. Use the AeroShield Track Viewer to get a
track that is no longer active.
Public ReadOnly Property GetTrackList(_
ByVal Index As Integer, _
ByVal Averaging As Integer _
) As PointD()
[System.Runtime.CompilerServices.IndexerName("GetTrackList")]
public PointD[] this[
int Index,
int Averaging
] {get;}
public:
property array< PointD >^ GetTrackList[int, int] {
array< PointD >^ get(
int Index,
int Averaging
);
}
Index
Averaging

DroneTracker.LatencyTest Method

Performs a test on each RSM to determine the average network latency for
command responses. Sets the Latency factor used to compensate for high latency
networks.
Public Function LatencyTest() As Boolean
public bool LatencyTest()

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.h… 7/23

[C++]

Return value:

Description

[Visual Basic]

[C#]

[C++]

Parameters

Description

[Visual Basic]
[C#]

[C++]

Description

public:
bool LatencyTest()
Boolean value if test completed successfully.

DroneTracker.LoadConfiguration Method

Load a configuration file saved on disk. The configuration file contains all of the
DroneTracker settings, such as the RSM list, sweep band settings, email
configurations, etc. Depending on the display options, it may make changes that
are not at all obvious to the end user.
Public Sub LoadConfiguration(_
ByVal Filename As String _
)
public System.Void LoadConfiguration(
string Filename
)
public:
System::Void LoadConfiguration(
String^ Filename
)
Filename

DroneTracker.MapFileName Property

If you have selected to use the DroneTracker map display, this is the filename of
the map file to load and display. There are separate instruction for the
preparation of a map file.
Public Property MapFileName() As String
public string MapFileName {get; set;}
public:
property String^ MapFileName {
String^ get();
void set(
String^ value
);
}

DroneTracker.MaskDepth Property

Gets/Sets the MaskDepth. When collecting sweep data for traces, how long you
collect can be a critical factor determining the performance of AeroShield. If you
collect for too short a time, you will miss a lot of intermittent signals that may
routinely pop up in the ISM bands. These signals will trigger a lot of positive
tracking events. While AeroShield is determining a positive can be ignored (which
can take many minutes), a true drone event may be missed. So a longer capture
time when creating masks is generally preferable. However, collecting for too long
also raises the noise floor, meaning that it is harder to detect weak signals. So the
best tradeoff is to collect long enough to see most transient signals that regularly
occur, but not longer than necessary to keep the noise floor as low as possible. The
best setting, therefore, depends on the location. IF the bands are noisy, then
choose a longer MaskDepth. IF the bands are very quiet, then choose a lower
MaskDepth.
The MaskDepth takes on 4 possible values. Low, Medium, High, Very High.
When you set the mask depth, you also set the dB offset used to create the mask.
The dB offset is a simple offset value added to each mask point to lift it above
noise. Longer acquisition (Very High mask Depth) corresponds to a lower dB

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.h… 8/23

[Visual Basic]
[C#]

[C++]

Description

[Visual Basic]

[C#]

[C++]

Parameters

Description

[Visual Basic]

[C#]

offset, since the noise floor is higher. Setting MaskDepth sets both the length of
time used to collect sweeps for the mask, as well as setting the dB offset for each
band.
Public Property MaskDepth() As MaskLevels
public MaskLevels MaskDepth {get; set;}
public:
property MaskLevels MaskDepth {
MaskLevels get();
void set(
MaskLevels value
);
}

DroneTracker.MonitorAdd Method

Adds a new RSM to the RSM list.
Public Sub MonitorAdd(_
ByVal Name As String, _
ByVal URL As String, _
ByVal Port As Integer, _
ByVal Latitude As Double, _
ByVal Longitude As Double _
)
public System.Void MonitorAdd(
string Name,
string URL,
int Port,
double Latitude,
double Longitude
)
public:
System::Void MonitorAdd(
String^ Name,
String^ URL,
int Port,
double Latitude,
double Longitude
)
Name as String
URL as String
Port as Integer
Latitude as Double
Longitude as Double

DroneTracker.MonitorCount Property

Returns the number of RSMs in the current RSM list.
Public ReadOnly Property MonitorCount() As Integer
public int MonitorCount {get;}

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.h… 9/23

[C++]

Description

[Visual Basic]

[C#]

[C++]

Description

[Visual Basic]

[C#]
[C++]

Description
[Visual Basic]

[C#]

[C++]
Parameters

Return value:

Description

[Visual Basic]
[C#]

[C++]

public:
property int MonitorCount {
int get();
}

DroneTracker.MonitorFind Method

The method returns the probe number based on the probe name. The number is
the index number according to the display order in the Drone list of the user
control. If the user control is not being used, then it will be the ordinal number of
the drone in the configuration file.
Public Function MonitorFind(_
ByVal Name As String _
) As Integer
public int MonitorFind(
string Name
)
public:
int MonitorFind(
String^ Name
)
Parameters
Name

DroneTracker.MonitorListClear Method

Clears the RSM list.
Public Sub MonitorListClear()
public System.Void MonitorListClear()
public: System::Void MonitorListClear()

DroneTracker.Monitor Method

Returns the details of the requested RSM.
Public Function Monitor(_
ByVal Index As Integer _) As RemoteMonitor
public RemoteMonitor Monitor(
int Index
)
public: RemoteMonitor Monitor(int Index)
Index of the RSM to return details on. This is the ordinal value of the RSM in the
RSM list.
A structure of type RemoteMonitor

DroneTracker.Monitoring Property

Sets/Gets the current monitoring state. Set this property to True to initiate
monitoring for drones on the RSM network.
Public Property Monitoring() As Boolean
public bool Monitoring {get; set;}
public:
property bool Monitoring {

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.… 10/23

Description

[Visual Basic]

[C#]

[C++]

Parameters

Description

[Visual Basic]

[C#]
[C++]

Description
[Visual Basic]

[C#]

bool get();
void set(
bool value
);
}

DroneTracker.MonitorRemove Method

Removes a particular RSM, by name, form the active RSM list.
Public Sub MonitorRemove(_
ByVal Name As String _
)
public System.Void MonitorRemove(
string Name
)
public:
System::Void MonitorRemove(
String^ Name
)
Name

DroneTracker.MonitorStatus Property

Returns the status of AeroShield Monitoring. This will have one these values: Idle,
Tracking, Masks, LatencyTest. It informs of the current activity going on with
AeroShield.
Public ReadOnly Property MonitorStatus() As String
public string MonitorStatus {get;}
public:
property String^ MonitorStatus {
String^ get();
}

DroneTracker.MonitorUpdate Method

Updates details for a specific RSM.
Public Sub MonitorUpdate(_
ByVal Index As Integer, _
ByVal Name As String, _
ByVal URL As String, _
ByVal Port As Integer, _
ByVal Latitude As Double, _
ByVal Longitude As Double _
)
public System.Void MonitorUpdate(
int Index,
string Name,
string URL,
int Port,
double Latitude,
double Longitude

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.… 11/23

[C++]

Parameters

Description

[Visual Basic]

[C#]

[C++]

Description

[Visual Basic]
[C#]

[C++]

Description

)
public:
System::Void MonitorUpdate(
int Index,
String^ Name,
String^ URL,
int Port,
double Latitude,
double Longitude
)
Index
Name
URL
Port
Latitude
Longitude

DroneTracker.OpenReports Property

Sets/Gets a value to determine whether tracking reports are automatically opened
in the default web browser at the end of each tracking event. This is useful if you
are at the terminal watching tracking events. However, it may be annoying if the
detection is running automatically. There is no reason to open all of the reports if
there is no operator present to view them.
Public Property OpenReports() As Boolean
public bool OpenReports {get; set;}
public:
property bool OpenReports {
bool get();
void set(
bool value
);
}

DroneTracker.ProbeList Property

Returns the list of RSMs in the RSM list.
Public ReadOnly Property ProbeList() As String
public string ProbeList {get;}
public:
property String^ ProbeList {
String^ get();
}

DroneTracker.RecordStationaryEvents Property

DroneTracker monitors and detects any mask violation events that exceed the
threshold and width requirements. If a source does not move at all, it is
considered a non-drone event, and normally not recorded in the tracking event
list. (In practice, the event shows up in the list when first detected, but then is
removed if it proves to be a stationary event.) If The property is True, the event
stays in the Event List, otherwise it is removed.

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.… 12/23

[Visual Basic]
[C#]

[C++]

Description

[Visual Basic]

[C#]

[C++]

Description
[Visual Basic]

[C#]

[C++]

Parameters

Description

[Visual Basic]

[C#]
[C++]

Public Property RecordStationaryEvents() As Boolean
public bool RecordStationaryEvents {get; set;}

public:
property bool RecordStationaryEvents {
bool get();
void set(
bool value
);
}

DroneTracker.ReportFolder Property

At the end of each tracking event, a report may be automatically created and
stored on the local disk space. This property Sets/Gets the report folder full path
name. The default is [MyDocuments]\Anritsu.
Public Property ReportFolder() As Object
public object ReportFolder {get; set;}
public:
property object^ ReportFolder {
object^ get();
void set(
object^ value
);
}

DroneTracker.SaveConfiguration Method

Saves the current control configuration to disk file.
Public Sub SaveConfiguration(_
ByVal Filename As String _
)
public System.Void SaveConfiguration(
string Filename
)
public:
System::Void SaveConfiguration(
String^ Filename
)
Filename

DroneTracker.SaveLogs Property

Gets/Sets a value indicating if the event log is automatically written to file. The
value defaults to false as there is normally no reason to write the event log to disk.
If this value is false, you can still save manually by right-clicking for the event log
context menu.
Public Property SaveLogs() As Boolean
public bool SaveLogs {get; set;}
public:
property bool SaveLogs {
bool get();
void set(

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.… 13/23

Description

[Visual Basic]

[C#]

[C++]

Description

[Visual Basic]

[C#]

[C++]

Input Parameters

Return value

Description

[Visual Basic]

bool value
);
}

DroneTracker.SendEmail Property

Sets/Gets a value determining whether tracking event email events are sent. If
this is true, the email server properties (hostname, port number, authentification)
must be set as well. Note: This is for email notification only. The API continues to
raise events to the calling program regardless.
Public Property SendEmail() As Boolean
public bool SendEmail {get; set;}
public:
property bool SendEmail {
bool get();
void set(
bool value
);
}

DroneTracker.SendRSMCommand Method

Sends a SCPI command to a specified RSM. Returns the SCPI response string if
the command is a query.
Public Function SendRSMCommand(_
ByVal ProbeNumber As Integer, _
ByVal Cmd As String _
) As String
public string SendRSMCommand(
int ProbeNumber,
string Cmd
)
public:
String^ SendRSMCommand(
int ProbeNumber,
String^ Cmd)
Probe Number: The number of the RSM in the RSM list. If this value is 0, then the
command will be sent to all RSMS.
Cmd: The SCPI command to send. Please refer to the Remote Spectrum Monitor
Programming Manual for details on supported SCPI commands.
The response of the command, if it is a query. Otherwise 'Ok' if the command was
sent properly.

DroneTracker.SetMonitorBand Method

Sets the particular sweep parameters for a particular RF sweep band. This
includes the start and stop frequencies, along with the RBW and reference level to
be used.
Public Sub SetMonitorBand(_
ByVal Index As Integer, _
ByVal BandInfo As MonitorBand _
)

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.… 14/23

[C#]

[C++]

Parameters

Description

[Visual Basic]
[C#]

[C++]

Description

[Visual Basic]
[C#]

[C++]

Description

[Visual Basic]

[C#]

public System.Void SetMonitorBand(
int Index,
MonitorBand BandInfo
)
public:
System::Void SetMonitorBand(
int Index,
MonitorBand BandInfo
)
Index
BandInfo

DroneTracker.ShowMap Property

Gets/Sets whether the user choses to view the internal mapping display. If this
property it , the mapping display is hidden. In many use cases, DroneTracker is
an integral part of a larger system that already provides mapping abilities. In a
stand-alone application, however, visual mapping may be desired through the
DroneTracker API.
Public Property ShowMap() As Boolean
public bool ShowMap {get; set;}
public:
property bool ShowMap {
bool get();
void set(
bool value
);
}

DroneTracker.ShowStatusbar Property

Gets/Sets a property determining if the DroneTracker control status bar is visible.
When the DroneTracker control is used in the context of a larger application, if is
often desirable to hide the status bar, and display the status information in the
larger applications status area.
Public Property ShowStatusbar() As Boolean
public bool ShowStatusbar {get; set;}
public:
property bool ShowStatusbar {
bool get();
void set(
bool value
);
}

DroneTracker.ShowToolBar Property

Gets/Sets a property determining if the DroneTracker control toolbar is visible.
When the DroneTracker control is used in the context of a larger application, if is
often desirable to hide the toolbar, and provide control through the host
applications user interface.
Public Property ShowToolBar() As Boolean
public bool ShowToolBar {get; set;}

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.… 15/23

[C++]

Description

[Visual Basic]

[C#]
[C++]

Description

[Visual Basic]

[C#]

[C++]

Parameters

Description

[Visual Basic]

[C#]

[C++]

public:
property bool ShowToolBar {
bool get();
void set(
bool value
);
}

DroneTracker.StartTCPServer Method

This function starts the TCP/IP server. This must be called by the host program if
it intends to receive and respond to a remote PC through this interface.
Public Sub StartTCPServer()
public System.Void StartTCPServer()
public:
System::Void StartTCPServer()

DroneTracker.StopTracking Method

Stops tracking on the specified track. If tracking not active, nothing happens.
Public Sub StopTracking(_
ByVal TrackIndex As Integer _
)
public System.Void StopTracking(
int TrackIndex
)
public:
System::Void StopTracking(
int TrackIndex
)
TrackIndex

DroneTracker.TimeToIgnore Property

Sets/Gets the number of seconds a signal is on the ignore list. If AeroShield
detects a mask violation that turns out not to be a drone, it places the signal on
the ignore list so it doesn't keep looking at the same signal over and over and
potentially miss real drone signals. We do not want to leave a signal on the Ignore
list. A signal that triggers AeroShield must be above the mask, so it is probably
intermittent, or of a single occurrence nature. It is likely at a frequency that will
be available when it goes away, and could very well be chosen by a drone
controller at a later time. So we do not want to ignore signals at this frequency for
a long time. So it needs to expire from the Ignore List. By default, signals expire
on the ignore list in 90 seconds. But this is user settable.
Public Property TimeToIgnore() As Integer
public int TimeToIgnore {get; set;}
public:
property int TimeToIgnore {
int get();
void set(
int value
);
}

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.… 16/23

Description

[Visual Basic]

[C#]

[C++]

Parameters

[Visual Basic]

[C#]

[C++]

Description

[Visual Basic]
[C#]

[C++]

DroneTracker.TrackAt Method

Normally DroneTracker is set to automatically sweep and monitor. A tracking
event begins with a mask violation. This function allows the user to initial a
tracking event without waiting for a mask violation. The user must provide a
frequency, RSM and antenna channel.
Public Sub TrackAt(_
ByVal Probe As Integer, _
ByVal Channel As Integer, _
ByVal Freq As Long _
)
public System.Void TrackAt(
int Probe,
int Channel,
long Freq
)
public:
System::Void TrackAt(
int Probe,
int Channel,
long Freq
)
Probe
Channel
Freq

DroneTracker.TrackingMode Property

Public Property TrackingMode() As TrackingModes
public TrackingModes TrackingMode {get; set;}
public:
property TrackingModes TrackingMode {
TrackingModes get();
void set(
TrackingModes value
);
}

DroneTracker.TransientFilter Property

Off|Low|High. Off means a single mask violation triggers an AeroShield attempt
to track and determine if a signal is really a drone. Low means a signal must
persist for 3 consecutive sweeps (typically about 3 seconds). High means the signal
must persist for 5 consecutive sweeps (typically about 5 seconds).
Public Property TransientFilter() As TransientFilterLevel
public TransientFilterLevel TransientFilter {get; set;}
public:
property TransientFilterLevel TransientFilter {
TransientFilterLevel get();
void set(
TransientFilterLevel value

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.… 17/23

Description

[Visual Basic]

[C#]

[C++]

Description

[Visual Basic]

[C#]

[C++]

);
}

DroneTracker.VerboseMode Property

Sets/Gets a value determining how much information is displayed in the tracking
log. Verbose set to true causes a lot more information to be displayed. This is
useful when setting up a system and wanting to know more about what it going on
under the hood. It is not useful when things are operating normally, as it can be
too much information to parse easily.
Verbose set to True also provides a warning message if the trace data exceeds the
mask at more than 50% of the data points. This is an indication that the mask is
probably inappropriate and needs to be redone.
Public Property VerboseMode() As Boolean
public bool VerboseMode {get; set;}
public:
property bool VerboseMode {
bool get();
void set(
bool value
);
}

MaskViolation Event

This event is raise each time there is a detected mask violation. Parameters
include the frequency, and bandwidth of the infringing signal. It also provides the
power over the mask and the probe number that detected the violation.
Public Event MaskViolation(_
ByVal Frequency As Long, _
ByVal Bandwidth As Long, _
ByVal PowerOver As Single, _
ByVal DetectionProbe As Integer _
)
public event MaskViolationEventHandler MaskViolation
delegate void MaskViolationEventHandler(
long Frquency,
long Bandwidth,
float PowerOver,
int DetectionProbe
)
public:
event MaskViolationEventHandler^ MaskViolation {
void add (MaskViolationEventHandler^ value);
void remove (MaskViolationEventHandler^ value);
}
delegate void MaskViolationEventHandler(
long Frquency,
long Bandwidth,
float PowerOver,
int DetectionProbe

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.… 18/23

Description

[Visual Basic]

[C#]
[C++]

Description

[Visual Basic]

[C#]

[C++]

Description

[Visual Basic]

)
Parameters
Frequency
Bandwidth
PowerOver
DetectionProbe

MonitorBand Structure

An RF sweep band. This structure is used for configuring a sweep band.
Public Structure MonitorBand
public struct MonitorBand
public value struct MonitorBand
Requirements
Namespace: AeroshieldAPI
Assembly: AeroshieldAPI (in AeroshieldAPI.dll)
Fields
Active, Antenna, RBW, ReferenceLevel, StartFrequency, StopFrequency

StatusMessage Event

This event is raised each time something is written to the on-screen event log.
This event still fires if the DroneTracker user control is not displayed. This
provides a means for an external program using AeroShield to access all event
data.
Public Event StatusMessage(_
ByVal Msg As String _
)

public event StatusMessageEventHandler StatusMessage
delegate void StatusMessageEventHandler(
string Msg
public:
event StatusMessageEventHandler^ StatusMessage {
void add (StatusMessageEventHandler^ value);
void remove (StatusMessageEventHandler^ value);
}
delegate void StatusMessageEventHandler(
String^ Msg
)
Parameters
Msg

TrackingEvent Event

This is an event raised by the DroneTracker control each time a position estimate
is obtained. It returns a tracking point index and the point coordinates.
Public Event TrackingEvent(_
ByVal Index As Integer, _
ByVal Location As PointF _

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.… 19/23

[C#]

[C++]

Parameters

Description

[Visual Basic]

[C#]

[C++]

Parameters

Description

[Visual Basic]

)
public event TrackingEventEventHandler TrackingEvent
delegate void TrackingEventEventHandler(
int Index,
PointF Location
)
public:
event TrackingEventEventHandler^ TrackingEvent {
void add (TrackingEventEventHandler^ value);
void remove (TrackingEventEventHandler^ value);
}
delegate void TrackingEventEventHandler(
int Index,
PointF Location
)
Index
Location

TrackingStarted Event

Event raised when a new tracking event begins. This returns an index into the
tracking event list.
Public Event TrackingStarted(_
ByVal Index As Integer _
)
public event TrackingStartedEventHandler TrackingStarted
delegate void TrackingStartedEventHandler(
int Index
)
public:
event TrackingStartedEventHandler^ TrackingStarted {
void add (TrackingStartedEventHandler^ value);
void remove (TrackingStartedEventHandler^ value);
}
delegate void TrackingStartedEventHandler(
int Index
)
Index

TrackingStopped Event

Event raised when a tracking event ends. It returns an index into the tracking
event list, and a parameter that indicates the reason the event ended. Reasons to
end a tracking event are: Event ended (meaning DroneTracker could no longer
find an IQ correlation, so the drone is assumed to have left the area or landed);
Stationary event (meaning the RF source detected did not move, so assumed not to
be a drone); User ended (meaning the user has used a UI element in the control to
manually stop tracking).
Public Event TrackingStopped(_
ByVal Index As Integer, _
ByVal Reason As Integer _

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.… 20/23

[C#]

[C++]

Parameters

Description

[Visual Basic]

[C#]

[C++]

Description

[Visual Basic]

[C#]
[C++]

Description

[Visual Basic]

[C#]
[C++]

Description

)
public event TrackingStoppedEventHandler TrackingStopped
delegate void TrackingStoppedEventHandler(
int Index,
int Reason
)
public:
event TrackingStoppedEventHandler^ TrackingStopped {
void add (TrackingStoppedEventHandler^ value);
void remove (TrackingStoppedEventHandler^ value);
}
delegate void TrackingStoppedEventHandler(
int Index,
int Reason
)
Index
Reason

DroneListInfo Structure

This structure is used to retrieve tracking event information from the tracking
list.
Public Structure DroneListInfo
public struct DroneListInfo
public value struct DroneListInfo
Requirements
Namespace: AeroshieldAPI
Assembly: AeroshieldAPI (in AeroshieldAPI.dll)
Fields
Active, Bandwidth, DetectionCount, Frequency, LibraryMatch, Location, Points,
ReportFile, TimeStampIn, TimeStampOut, TrackAveraging, TrackCount,
TracksFile, TraveledDistance, TriggerChannel, TriggerProbe

Active Field

The tracking event is currently still ongoing if this value is true.
Public Active As Boolean
public bool Active
public:
bool Active;

Bandwidth Field

RF bandwidth of the mask violation that started the tracking event.
Public Bandwidth As Long
public long Bandwidth
public:
long Bandwidth;

DetectionCount Field

The number of times an event has triggered with the same set of RF parameters
(frequency range).

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.… 21/23

[Visual Basic]
[C#]

[C++]

Description

[Visual Basic]

[C#]
[C++]

Description

[Visual Basic]

[C#]
[C++]

Description

[Visual Basic]
[C#]

[C++]

Description

[Visual Basic]
[C#]

[C++]

Description

[Visual Basic]
[C#]

[C++]

Description

[Visual Basic]
[C#]

[C++]

Description

Public DetectionCount As Integer
public int DetectionCount

public:
int DetectionCount;

Frequency Field

The center frequency of the tracking signal.
Public Frequency As Long
public long Frequency
public:
long Frequency;

LibraryMatch Field

Not used.
Public LibraryMatch As String
public string LibraryMatch
public:
String^ LibraryMatch;

Location Field

Not used.
Public Location As PointF
public PointF Location
public:
PointF Location;

Points Field

A list of GPS coordinates that make up the track flown by the drone.
Public Points As String
public string Points
public:
String^ Points;

ReportFile Field

The full pathname of the tracking report.
Public ReportFile As String
public string ReportFile
public:
String^ ReportFile;

TimeStampIn Field

When the tracking event started.
Public TimeStampIn As Date
public DateTime TimeStampIn
public:
DateTime TimeStampIn;

TimeStampOut Field

When the tracking event ended.

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.… 22/23

[Visual Basic]
[C#]

[C++]

Description

[Visual Basic]

[C#]
[C++]

Description

[Visual Basic]

[C#]
[C++]

Description

[Visual Basic]
[C#]

[C++]

Description

[Visual Basic]
[C#]

[C++]

Description

[Visual Basic]
[C#]

[C++]

Description

[Visual Basic]
[C#]

[C++]

Public TimeStampOut As Date
public DateTime TimeStampOut

public:
DateTime TimeStampOut;

TrackAveraging Field

Tracks, when displayed on the map, use a running average to smooth the track
lines. (There is inherent uncertainty in each TDOA location estimate, and this
makes for a much smoother and typically more accurate lilne) The values can be:
None; Low; Medium; or High.
Public TrackAveraging As Integer
public int TrackAveraging
public:
int TrackAveraging;

TrackCount Field

The number of track points in the tracking event.
Public TrackCount As Integer
public int TrackCount
public:
int TrackCount;

TracksFile Field

Not used
Public TracksFile As String
public string TracksFile
public:
String^ TracksFile;

TraveledDistance Field

The total distance tracked.
Public TraveledDistance As Integer
public int TraveledDistance
public:
int TraveledDistance;

TriggerChannel Field

The sweep band that triggered the event.
Public TriggerChannel As Integer
public int TriggerChannel
public:
int TriggerChannel;

TriggerProbe Field

The RSM that first triggers the tracking event.
Public TriggerProbe As String
public string TriggerProbe
public:
String^ TriggerProbe;

2/1/24, 3:03 PM AeroShield Class

https://dl-qa.cdn-anritsu.com/en-us/test-measurement/ohs/10450-00066B/index.html#page/MX280002A-AeroShield_Help%2Fchap-8-api.09.3.… 23/23

Description
[Visual Basic]

[C#]

[C++]

Description
[Visual Basic]

[C#]

[C++]

Description
[Visual Basic]

[C#]

[C++]

Description

[Visual Basic]

[C#]
[C++]

Description

[Visual Basic]

[C#]
[C++]

Description

[Visual Basic]

[C#]
[C++]

Active Field

Whether or not this band is active in monitoring.
Public Active As Boolean
public bool Active
public:
bool Active;

Antenna Field

The antenna port used on each RSM for this band.
Public Antenna As Integer
public int Antenna
public:
int Antenna;

RBW Field

Resolution bandwidth
Public RBW As Integer
public int RBW
public:
int RBW;

ReferenceLevel Field

Reference level
Public ReferenceLevel As Single
public float ReferenceLevel
public:
float ReferenceLevel;

StartFrequency Field

Start frequency
Public StartFrequency As Long
public long StartFrequency
public:
long StartFrequency;

StopFrequency Field

Stop frequency
Public StopFrequency As Long
public long StopFrequency
public:
long StopFrequency;

Anritsu Company
1-800-ANRITSU

10450-00066, Rev. B

http://www.anritsu.com/
http://www.anritsu.com/
http://www.anritsu.com/

